Manor Primary School

MONOR

Calculation Policy
（Adapted from White Rose）

About our Calculation Policy

This policy has been designed in accordance with the National Curriculum 2014 and helps to develop the three main aims of Fluency, Reasoning and Problem Solving. It is designed to give pupils a consistent and smooth progression of learning when using the four main operations.
Please note that the early learning teaching in number and calculations in Reception follows the EYFS document.
The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014. However, it is vital that pupils are taught according to the stage that they are currently working at, moving on when secure.
It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of the calculation and to help them recognise when to use certain operations and methods when faced with problems. This must be priority in Numeracy lessons.

Aims of the written calculation policy

- To support greater consistency in the teaching of written calculations across the school.
- To strengthen continuity and progression in children's understanding of the development of written calculations.
- To form a core set of methods which every child will experience and build upon.
- To build on models and images introduced to promote conceptual understanding.
- To provide reference and guidance on the teaching of calculation skills for teaching staff, teaching assistants and parents.

Good practice in calculation

- Establish mental methods based on good understanding of place value in numbers and table facts
- Show children how to set out written calculations vertically, initially using expanded layouts (starting with adjustments of 'carrying' and introducing this adjustment slowly and systematically).
- Link practical, mental and written methods.
- Make strong links between inverse operations of addition/subtraction and multiplication/division.
- Make sure children always look out for special cases that can still be done entirely mentally.
- Gradually refine the written record into a more compact standard method.
- Extend to larger numbers and decimals.
- Ensure that the understanding of remainders and what to do with them in context, is taught. (E.g. whole numbers, fractions or decimals)
- Once written methods are introduced, continue developing mental skills by applying them to appropriate examples. (Encourage children to try mental methods first.)
- Encourage children to identify the best method and make choices.
- Encourage children to use tools to support their learning e.g. number lines, 100 squares etc. until they are secure.
- Encourage the use of estimation to check the reasonableness of answers.
- Encourage children to use the inverse to check answers.

Through problem-solving lessons and activities, children are encouraged to use their mathematical skills and understanding to solve problems unfamiliar to them.

> Reasoning

Maths reasoning tasks get children thinking about number problems logically so they can reach conclusions, find solutions and decide which methods to use and why.

$>$ Fluency

Fluency tasks help children strengthen their foundational knowledge. They practise applying their skills and understanding to different number problems with varying contexts and levels of complexity, while independently choosing the method they use to tackle number problems successfully. Fluency brings together problem-solving and reasoning.

Using hands-on resources

Key language: sum, total, parts and whole, plus, add, altogether, more, is equal to, is the same as.

Objectives	Concrete	Pictorial	Abstract
EYFS - Numbers Automatically recalls number bonds for numbers 0-5 and some to 10 . Is able to subitise.	Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Year 2

I can solve problems with addition and subtraction including those involving numbers, quantities and measures by using objects or pictures.

I can answer simple addition and subtraction questions in my head as well as by writing them down.

I can add and subtract 2 two digit numbers mentally and when using objects, number lines and pictures

Part whole models and partitioning

$$
41+8
$$

Conceptual variation; different ways to ask children to solve 391-186

Subtraction

Key language: Takeaway, less than, the difference, subtract, minus, fewer and decrease.

Objectives	Concrete	Pictorial	Abstract
EYFS (Numbers) Understands one more than/one less than relationship between consecutive numbers.	Physically take away objects. $4-3=1$ Use tens frames and counters	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. இ®O	Part whole models

Conceptual variation; different ways to ask children to solve 391-186

Key language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Objectives	Concrete	Pictorial	Abstract
EYFS - Numerical patterns Is able to explore and represent patterns within numbers up to 10 , including evens and odd, double facts and how quantities can be distributed equally (ELG). Can compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity (ELG).	Doubling using objects	Doubling using pictures	Double 2 $2+2=4$
Year 1 Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.		Draw arrays $\begin{aligned} & 00000 \\ & 00008 \end{aligned}$	Write repeated additions $2+2+2+2+2=10$

Conceptual variation; different ways to ask children to solve 6×23

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & L_{-}=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
		100s	10s	15
With the counters, prove that 6×23 $=138$			$\begin{aligned} & \hline 88 \\ & 88 \\ & 88 \\ & 88 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \hline 000 \\ & \hline 00 \\ & \hline 080 \\ & \hline 008 \\ & \hline 08 \\ & \hline 00 \end{aligned}$

Calculation policy— Division

Key language: Share, group, divide, divided by, half

Objectives	Concrete	Pictorial	Abstract
EYFS - Numerical Patterns Is able to explore and represent patterns within numbers up to 10 , including evens and odd, double facts and how quantities can be distributed equally (ELG).	Halving using objects Sharing using a range of objects. $6 \div 2$	Halving using pictures	Half of 6

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?
$5 \longdiv { 6 1 5 }$
$615+5=$
[]=615+5

What is the calculation
What is the answer?

